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A major step backwards?
• MapReduce is a step backward in database access

– Schemas are good
– Separation of the schema from the application is good
– High-level access languages are good

• MapReduce is poor implementation

– Brute force and only brute force (no indexes, for example)
• MapReduce is not novel
• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…

• MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

Michael Stonebraker
Turing Award Winner 2015
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Known and unknown unknowns
• Databases only help if you know what questions to ask

– “Known unknowns”
• What’s if you don’t know what you’re looking for?

– “Unknown unknowns”
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ETL: redux
• Often, with noisy datasets, ETL is the analysis!
• Note that ETL necessarily involves brute force data scans
• E, then L and T?
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Structure of Hadoop warehouses

Source: Wikipedia (Star Schema)

Don’t normalize!

http://www.cwi.nl/~boncz/bigdatacourse


www.cwi.nl/~boncz/bigdatacourse

Relational databases vs. MapReduce
• Relational databases:

– Multipurpose: analysis and transactions; batch and interactive
– Data integrity via ACID transactions

• ACID = Atomicity, Consistency, Isolation, Durability
– Lots of tools in software ecosystem (for ingesting, reporting, etc.)

– SQL: query language, automatic query optimization
• MapReduce (Hadoop):

– Designed for large clusters, fault tolerant
– Data is accessed in “native format”

– Programmers retain control over performance
– Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)
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Philosophical differences
• Parallel relational databases

– Schema on write
– Failures are relatively infrequent
– “Possessive” of data
– Mostly proprietary

• MapReduce
– Schema on read
– Failures are relatively common
– “In situ” data processing

– Open source
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MapReduce vs. RDBMS: grep

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
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MapReduce vs. RDBMS: select

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
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MapReduce vs. RDBMS: aggregation

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
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MapReduce vs. RDBMS: join

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Vertica RDBMS Hadoop
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Why?
• Schemas are a good idea

– Parsing fields out of flat text files is slow
– Schemas define a contract, decoupling logical from physical

• Schemas allow for building efficient auxiliary structures
– Value indexes, join indexes, etc.

• Relational algorithms have been optimised for the underlying system
– The system itself has complete control of performance-critical decisions
– Storage layout, choice of algorithm, order of execution, etc.

http://www.cwi.nl/~boncz/bigdatacourse
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Storage layout: row vs. column stores

R1

R2

R3

R4

Row store

Column store
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Storage layout: row vs. column stores
• Row stores

– Easy to modify a record
– Might read unnecessary data when processing

• Column stores
– Only read necessary data when processing

– Tuple writes require multiple accesses

http://www.cwi.nl/~boncz/bigdatacourse
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Advantages of column stores
• Read efficiency

– If only need to access a few columns, no need to drag around the rest 
of the values

• Better compression
– Repeated values appear more frequently in a column than repeated 

rows appear

• Vectorised processing
– Leveraging CPU architecture-level support

• Opportunities to operate directly on compressed data
– For instance, when evaluating a selection; or when projecting a column
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Why not in Hadoop?

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

RCFile è ORC, Parquet (+compression)

limitation would not help our goal of fast query pro-
cessing for a huge amount of disk scans on massively
growing data sets.

3) Limited by the page-level data manipulation inside a
traditional DBMS engine, PAX uses a fixed page as the
basic unit of data record organization. With such a fixed
size, PAX would not efficiently store data sets with a
highly-diverse range of data resource types of different
sizes in large data processing systems, such as the one
in Facebook.

III. THE DESIGN AND IMPLEMENTATION OF RCFILE

In this section, we present RCFile (Record Columnar File),
a data placement structure designed for MapReduce-based data
warehouse systems, such as Hive. RCFile applies the concept
of “first horizontally-partition, then vertically-partition” from
PAX. It combines the advantages of both row-store and
column-store. First, as row-store, RCFile guarantees that data
in the same row are located in the same node, thus it has
low cost of tuple reconstruction. Second, as column-store,
RCFile can exploit a column-wise data compression and skip
unnecessary column reads.

A. Data Layout and Compression

RCFile is designed and implemented on top of the Hadoop
Distributed File System (HDFS). As demonstrated in the
example shown in Figure 3, RCFile has the following data
layout to store a table:

1) According to the HDFS structure, a table can have
multiple HDFS blocks.

2) In each HDFS block, RCFile organizes records with
the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into
row groups. For a table, all row groups have the same
size. Depending on the row group size and the HDFS
block size, an HDFS block can have only one or multiple
row groups.

Fig. 3: An example to demonstrate the data layout of RCFile
in an HDFS block.

3) A row group contains three sections. The first section is
a sync marker that is placed in the beginning of the row
group. The sync marker is mainly used to separate two
continuous row groups in an HDFS block. The second
section is a metadata header for the row group. The
metadata header stores the information items on how
many records are in this row group, how many bytes
are in each column, and how many bytes are in each
field in a column. The third section is the table data
section that is actually a column-store. In this section,
all the fields in the same column are stored continuously
together. For example, as shown in Figure 3, the section
first stores all fields in column A, and then all fields in
column B, and so on.

We now introduce how data is compressed in RCFile. In
each row group, the metadata header section and the table
data section are compressed independently as follows.

• First, for the whole metadata header section, RCFile uses
the RLE (Run Length Encoding) algorithm to compress
data. Since all the values of the field lengths in the same
column are continuously stored in this section, the RLE
algorithm can find long runs of repeated data values,
especially for fixed field lengths.

• Second, the table data section is not compressed as a
whole unit. Rather, each column is independently com-
pressed with the Gzip compression algorithm. RCFile
uses the heavy-weight Gzip algorithm in order to get
better compression ratios than other light-weight algo-
rithms. For example, the RLE algorithm is not used since
the column data is not already sorted. In addition, due
to the lazy decompression technology to be discussed
next, RCFile does not need to decompress all the columns
when processing a row group. Thus, the relatively high
decompression overhead of the Gzip algorithm can be
reduced.

Though currently RCFile uses the same algorithm for all
columns in the table data section, it allows us to use different
algorithms to compress different columns. One future work
related to the RCFile project is to automatically select the
best compression algorithm for each column according to its
data type and data distribution.

B. Data Appending

RCFile does not allow arbitrary data writing operations.
Only an appending interface is provided for data writing in
RCFile because the underlying HDFS currently only supports
data writes to the end of a file. The method of data appending
in RCFile is summarized as follows.

1) RCFile creates and maintains an in-memory column

holder for each column. When a record is appended,
all its fields will be scattered, and each field will
be appended into its corresponding column holder. In
addition, RCFile will record corresponding metadata of
each field in the metadata header.

2) RCFile provides two parameters to control how many
records can be buffered in memory before they are

RCFile
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BIG DATA SQL SYSTEMS
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Big SQL System Architecture
storage

–columnar storage + compression 
–table partitioning / distribution
–clustering and indexing query-processor

l vectorized or JIT codegen
l fine- & coarse-grained parallelism
l rich SQL (+authorization+..)cluster

l (meta-) data sharing
l elastic resource provisioning
l continous update infrastructure
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Columnar Compression
• Trades I/O for CPU

– A winning proposition currently

– Even trading RAM bandwidth for CPU wins

• 64 core machines starved for RAM bandwidth 

• Additional column-store synergy:

– Column store: data of the same distribution close together

• Better compression rates

• Generic compression (gzip) vs Domain-aware compression

– Synergy with vectorized processing (see later) 
compress/decompress/execution, SIMD 

– Can use extra space to store multiple copies of data in different 
sort orders (Vertica approach)
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Run-length Encoding

Q1
Q1
Q1
Q1
Q1
Q1
Q1

Q2
Q2
Q2
Q2

…

…

1
1
1
1
1
2
2

1
1
1
2

…

…

Product IDQuarter
(value, start_pos, run_length)

(1, 1, 5)

…

…

Product IDQuarter

(Q2, 301, 350)
(Q3, 651, 500)
(Q4, 1151, 600)

(2, 6, 2)

(1, 301, 3)
(2, 304, 1)

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

(Q1, 1, 300)
(value, start_pos, run_length)

http://www.cwi.nl/~boncz/bigdatacourse


www.cwi.nl/~boncz/bigdatacourse

Bitmap Encoding
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“Integrating Compression and Execution in Column-Oriented 
Database Systems” Abadi et. al,  SIGMOD ’06

• For each unique 
value, v, in column c, 
create bit-vector b
– b[i] = 1 if c[i] = v

• Good for columns 
with few unique 
values

• Each bit-vector can 
be further 
compressed if sparse
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Dictionary Encoding

Dictionary
+

“Integrating Compression and Execution in Column-Oriented 
Database Systems” Abadi et. al,  SIGMOD ’06

• For each unique 
value create 
dictionary entry
• Dictionary can 

be per-block or 
per-column
• Column-stores 

have the 
advantage that 
dictionary 
entries may 
encode multiple 
values at once
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Differential Encoding
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Exceptions (there 
are better ways to 
deal with 
exceptions)

• Encodes values as b bit offset from 
previous value

• Special escape code (just like 
frame of reference encoding) 
indicates a difference larger than 
can be stored in b bits
– After escape code, original 

(uncompressed) value is written 
• Performs well on columns 

containing increasing/decreasing 
sequences
– inverted lists
– timestamps
– object IDs
– sorted / clustered columns

“Improved Word-Aligned Binary 
Compression for Text Indexing” Ahn, 
Moffat, TKDE’06
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Heavy-Weight Compression Schemes

• Modern disks (SSDs) can achieve > 1GB/s
• 1/3 CPU for decompression è 3GB/s needed

è Lightweight compression schemes are better

è Even better: operate directly on compressed data

“Super-Scalar RAM-CPU Cache Compression” 
Zukowski, Heman, Nes, Boncz, ICDE’06
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Examples
• SUMi(rle-compressed column[i]) è SUMg(count[g] * value[g])
• (country == “Asia”) è countryCode == 6

strcmp SIMD

Benefits:
• I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved)
• Reduces memory–CPU bandwidth requirements
• Opens up possibility of operating on multiple records at once

Operating Directly on Compressed Data

“Integrating Compression and Execution in Column-Oriented 
Database Systems” Abadi et. al,  SIGMOD ’06
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Big SQL System Architecture
storage

–columnar storage + compression
–table partitioning / distribution
–clustering and indexing query-processor

l vectorized or JIT codegen
l fine- & coarse-grained parallelism
l rich SQL (+authorization+..)cluster

l (meta-) data sharing
l elastic resource provisioning
l continous update infrastructure
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• data is spread based on a Key
– Functions: Hash, Range, Value

• “distribution”
– Goal: parallelism

• give each compute node a piece of the data
• each query has work on every piece (keep everyone busy) 

• “partitioning”
– Goal: data lifecycle management

• Data warehouse e.g. keeps last six months
• Every night: load one new day, drop the oldest partition

– Goal: improve access patterm
• when querying for May, drop Q1,Q3,Q4  (“partition pruning”) 

Table Partitioning and Distribution

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

node1
node2

node3
node4

Which kind of function would you use for which method?
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• Each node writes the partitions it owns

– Where does the data end up, really?

• HDFS default block placement strategy:

– Node that initiates writes gets first copy

– 2nd copy on the same rack

– 3rd copy on a different rack

• Rows from the same record should be on the same node

– Not entirely trivial in column stores

• Column partitions should be co-located

– Simple solution:

• Put all columns together in one file (RCFILE, ORCFILE, Parquet)

– Complex solution:

• Replace the default HDFS block placement strategy by a custom one 

Data Placement in HDFS

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

node1
node2

node3
node4

http://www.cwi.nl/~boncz/bigdatacourse


www.cwi.nl/~boncz/bigdatacourse

• Cloud storage (S3, Azure Blob Storage) provides no locality
– High latency (100-200msec) 
– Slow-medium bandwidth (20-125MB/s)

• Partitioning and Distribution still make sense
– Distribution: allow jobs to be parallelized

– Partitioning: partition-pruning, data lifecycle mgmt
• Data locality 

– Can only be achieved by caching: fill local disk on-the-fly, reuse data from it
– Local NVMe disk (AWS i3 instance type): 

• 0.03msec latency, ~500MB/sec bandwidth, 500GB size (per core)

Data Placement in the Cloud?

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

node1
node2

node3
node4
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• Data is often naturally ordered
– very often, on date

• Data is often correlated
– orderdate/paydate/shipdate
– marketing campaigns/date
– ..correlation is everywhere

..hard to predict

Zone Maps
– Very sparse index
– Keeps MinMax for every column
– Cheap to maintain

• Just widen bounds on 
each modification

Natural Order Indexing

Q: key BETWEEN 13 AND 15?

Q: acctno BETWEEN 150 AND 200?

zone 0
zone 1

zone 2
3one 3

zone
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Multi-Dimensional Partitioning
Partitioning is often done on the time dimension.

• what if you want to partition on multiple dimensions?

Use an ordering function that reduces multiple dimensions to a single
For instance Z-order mixes the dimension bits round robin (bitwise 

zero=0,one=1,two=10,three=11,four=100,five=101,six=110,seven=111, etc)

10 11

00 01

110000

111

0

0 1

10

00 01

1111

0000 0100

Example: 
dataframe of 10.000 parquet files

queries filter on zipcode or time

• create 128 time ranges (0-63 = 6bits)

• create 128 zipcode ranges (0-63 = 6bits)

• bitmix the range numbers (0-4095 = 12bits)

• re-partition the dataframe on this number

Desired result: 4096 new parquet files

Question: will “partition pruning” based on 
MinMax become more effective?
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Example
2003 201820142008

2003
=0000

2008
=0100

2013
=1000

2018
=1100

1000=0000

9999=1111

Query: 
select .. 
where zipcode=1013

6675=1100

2225=0100

4450=1000
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Big SQL System Architecture
storage

–columnar storage + compression
–table partitioning / distribution
–clustering and indexing query-processor

l vectorized or JIT codegen
l fine- & coarse-grained parallelism
l rich SQL (+authorization+..)cluster

l (meta-) data sharing
l elastic resource provisioning
l continous update infrastructure
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DBMS Computational Efficiency?
TPC-H 1GB, query 1
• selects 98% of fact table, computes net prices and aggregates all
• Results:

– C program: ?
– MySQL: 26.2s 

– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05
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DBMS Computational Efficiency?
TPC-H 1GB, query 1
• selects 98% of fact table, computes net prices and aggregates all
• Results:

– C program: 0.2s
– MySQL: 26.2s 

– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05
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SCAN

SELECT

PROJECT

alice 22101
next()

next()

next()

ivan 37102

ivan 37102

ivan 37102

ivan 350102

alice 22101

SELECT   id, name 
(age-30)*50 AS bonus

FROM employee
WHERE   age > 30

350

FALSETRUE  

22 > 30 ?37 > 30 ?

37 – 30 7 * 50 

7

How Do Query Engines Work? 
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SCAN

SELECT

PROJECT

next()

next()

next()

ivan 350102

Operators

Iterator interface
-open()
-next(): tuple
-close()

How Do Query Engines Work? 
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SCAN

SELECT

PROJECT

alice 22101
next()

next()

next()

ivan 37102

ivan 37102

ivan 37102

ivan 350102

alice 22101

350

FALSETRUE  

22 > 30 ?37 > 30 ?

37 – 30 7 * 50 

7
Primitives

Provide computational
functionality

All arithmetic allowed in 
expressions, 
e.g. Multiplication

mult(int,int) è int
7 * 50 

How Do Query Engines Work? 
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SCAN

SELECT

PROJECT

next()

next()

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

Observations:

next() called much less 
often è more time spent 
in primitives less in 
overhead

primitive calls process an 
array of values in a 
loop:

> 30 ?

- 30 * 50

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

“Vectorized In Cache 
Processing”

vector = array of 
~100

processed in a tight 
loop

CPU cache Resident

next()

“MonetDB/X100: Hyper-Pipelining Query Execution 
” Boncz, Zukowski, Nes, CIDR’05
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SCAN

SELECT

PROJECT

next()

next()

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

Observations:

next() called much less 
often è more time spent 
in primitives less in 
overhead

primitive calls process an 
array of values in a 
loop:

> 30 ?

- 30 * 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support 

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

next()

“MonetDB/X100: Hyper-Pipelining Query Execution 
” Boncz, Zukowski, Nes, CIDR’05
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SCAN

SELECT

PROJECT
FALSE
TRUE
TRUE
FALSE

350
750

Observations:

next() called much less 
often è more time spent 
in primitives less in 
overhead

primitive calls process an 
array of values in a 
loop:

> 30 ?

* 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support 

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

FALSE
TRUE
TRUE
FALSE

> 30 ?

7
15

- 30

350
750

* 50

for(i=0; i<n; i++)

res[i] = (col[i] > x)

for(i=0; i<n; i++)

res[i] = (col[i] - x)

for(i=0; i<n; i++)

res[i] = (col[i] * x)

“MonetDB/X100: Hyper-Pipelining Query Execution 
” Boncz, Zukowski, Nes, CIDR’05
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Varying the Vector size

Less and less iterator.next() 
and 

primitive function calls 
(“interpretation overhead”)

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05
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Vectors start to exceed the
CPU cache, causing 

additional memory traffic

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05

Varying the Vector size
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Systems That Use Vectorization
• Actian Vortex (Vectorwise-on-Hadoop)
• Hive, Drill
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Big SQL System Architecture
storage

–columnar storage + compression
–table partitioning / distribution
–clustering and indexing query-processor

l vectorized or JIT codegen
l fine- & coarse-grained parallelism
l rich SQL (+authorization+..)cluster

l (meta-) data sharing
l elastic resource provisioning
l continous update infrastructure
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Code-Generation based Query Execution
• SQL query gets parsed, normalized & optimized as in any other DB system
• Result is a physical query plan. Then:

– Cut the plan in pipeline stages. Make a cut at each “blocking” operator
• Blocking: op must see all data before producing output (eg SORT)

– Translate each pipeline into a code snippet: single for-loop over the data.

– Compile the code (“Just-In-Time compilation”) and run on your data

SELECT count(*) FROM store_sales WHERE ss_item_sk = 1000

becomes in Java: long count = 0;
for(ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {

count += 1;
}

}
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Code-Generation based Query Execution
• Query gets parsed, normalized optimized as always
• Result is a physical query plan. Then:

– Generate a separate program that executes (only) this exact query plan
– Compile this program (Just-In-Time compilation) and run on your data

• The good:
– No interpretation needed. You get a program that exactly runs the 

query, data layouts and types known. Logic hard-coded as tight loops 
over the data. Very fast.

• Spark (“tungsten whole-stage codegen”): generates java code

• Tableau/Hyper: assembly (“LLVM IR” intermediate representation)
• The bad:

– JIT compilation takes time (query latency). Hard to debug. Hard to get 
per operator performance info (only per-stage). Cannot change the 
queryplan at runtime.
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Big SQL System Architecture
storage

–columnar storage + compression
–table partitioning / distribution
–clustering and indexing query-processor

l vectorized or JIT codegen
l fine- & coarse-grained parallelism
l rich SQL (+authorization+..)cluster

l (meta-) data sharing
l elastic resource provisioning
l continous update 

infrastructure
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Asynchronous 
Data Transfer

TUPLE MOVER

> Read Optimized 
Store (ROS)
• On disk
• Sorted / Compressed
• Segmented
• Large data loaded direct

Batch Update Infrastructure (Vertica)
Challenge: hard to update columnar compressed data 

(A B C | A)

A B C

Trickle 
Load

> Write Optimized 
Store (WOS)

§ Memory based
§ Unsorted / Uncompressed
§ Segmented
§ Low latency / Small quick 

inserts

A B C
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Batch Update Infrastructure (Hive)
each update writes a separate HDFS file

Challenge: Merge During Query Processing
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• Cloud storage (S3, Azure Blob Storage) is not updatable
– Each persistent update must write some new S3 file

• Challenge:

– Data may arrive all the time, in small quantities

• This leads to very many small files

• For S3+Parquet, we need 100MB of data per file to be efficient!

• Solutions:

1. Batch data in the update pipeline. Only go to the cloud when you have 100MB.

2. A background compaction process:

• Once in a while collapse many small S3 files into a big one

• Either to a minimum threshold – or using exponentially bigger file targets

– See: Log-Structured Merge-Trees (LSM trees)

• Compaction is a good time to do partitioning/distribution

Batch Update Infrastructure in the Cloud

distribute by hash

Q1

Q2

Q3

Q4

partition by
range

node1
node2

node3
node4
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SQL ON BIG DATA
- IN THE CLOUD
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• Moore’s Law

–$100/TB storage, $1000 servers, commodity 
networking

• Increasing volumes of “dark” data

–Data collected but never analyzed

• Widening analysis gap of ”traditional” solutions

–Due to their cost, complexity, scalability, & rigidity

Factors driving Data Systems growth
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2005: No way! Are you crazy?

2012: Don’t think so... But wait, we store our email where? 

2018: Of course!

Is it safe to have enterprise data in the Cloud?
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Getting a database in a cloud

Hi! I'm a Data Scientist!
I'm looking for a database for 
our cloud system

Hello! I am your account manager at X! 

Sure thing! Let's install our product, 
DBMS X for you!

Awesome! It seems
to work! Great. Let me send you

that invoice!

Just a sec… How much does
the storage cost ? Hold on, let me check that

And the system is
elastic, right?

Wait, what?

And I only pay for what I 
use, right?

Mommy!!!
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Traditional DB systems and the cloud
• Designed for:
–Small, fixed, optimized clusters of machines
–Constrained amount of data and resources

• Can be delivered via the Cloud
–Reduce the complexity of hardware setup, software installation
–No elasticity
–No cheap storage
–Not designed for cloud's poor stability
–Not easy to use
–Not "always on"
–...
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Data in the Cloud
• Data traditional DW systems are built for
–Assume predictable, slow-evolving internal data
–Complex ETL (extract-transform-load) pipelines and physical tuning
–Limited number of users and use-cases
–OK to cost $100K per TB

• Data in the cloud
–Dynamic, external sources: web, logs, mobile devices, sensor data…
–ELT instead of ETL (data transformation inside the system)
–Often in semi-structured form (JSON, XML, Avro)
–Access required by many users, very different use cases
–100TBs volume common
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Complexity
(deployment & 

operational)

Cost (capex + opex)

Low

Medium

Low Medium High

High

Appliance

RYO

CLOUD DW

Buy an appliance
§ Teradata, Microsoft APS, Netezza
§ High capex, low opex
§ Low complexity
§ Gold standard for performance

Roll-your-own (RYO)
§ Buy & install a cluster of servers
§ Buy, install, & configure software (Vertica, 

Asterdata, Greenplum, …)
§ High complexity
§ Medium capex and opex

Only 2 options 5 years ago!

10,000 ft. view: Complexity vs Cost

Use a SAAS DW in the cloud
§ AWS Redshift, MSFT SQL DW, Snowflake, BigQuery
§ Low complexity
§ No capex,  low opex

Roll-your-own-Cloud 
(RYOC)
§ Rent a cluster of cloud servers
§ Buy, install, & configure software (Spark, 

Hive, Vertica, Asterdata, Greenplum, …)
§ Medium to high complexity
§ Low capex 
§ Medium opex

RYOC
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Appliance

RYO

CLOUD DW

Time to Insights

Cost

Minutes

Weeks

Low Mediu
m

High

Months

Instant gratification

RYOC

Months due to high capex cost
§ Significant due diligence through multiple 

vendor POCs
§ Physical delivery and setup of goods

Hardware and Deployment
§ Physical delivery and setup of cluster
§ IT deploys complex parallel system
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Appliance

RYO

CLOUD DW

Time to make an 
adjustment

Cost of making an adjustment

Minutes

Weeks

Low Mediu
m

High

Months

Scalability and the price of agility

RYOC

http://www.cwi.nl/~boncz/bigdatacourse


www.cwi.nl/~boncz/bigdatacourse

Appliance

Absolute 
Performance

Cost

Low

Medium

Low Medium High

High

Unfortunately, no “free lunch”

Cloud DW

RYO

RYOC
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• No CapEx and low OpEx

• Go from conception to insight in hours 
• Rock bottom storage prices (Azure, AWS S3, GFS)
• Flexibility to scale up/down compute capacity

• Simple upgrade process

Why Cloud DW?
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Amazon (AWS) Redshift
• Classic shared-nothing design w. locally attached storage

–Engine is ParAccel database system 

(classic MPP, JIT C++)

• Leverages AWS services

–EC2 compute instances

–S3 storage system

–Virtual Private Cloud (VPC)

• Leader in market adoption
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Catalogs
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A Redshift Instance

NODE 1SLICE 1 SLICE 2 NODE 2SLICE 3 SLICE 4

ID

Single Leader Node 

One or more compute 
nodes (EC2 instance)One slice/core Memory, storage, & data 

partitioned among slices

AmtName ID AmtName ID AmtName ID AmtName

Hash & round-robin 
table partitioning

Application

http://www.cwi.nl/~boncz/bigdatacourse


www.cwi.nl/~boncz/bigdatacourse

Within a slice

ID AMT
NAM
E

Min and Max value of each block 
retained in a “zone” map 

Rich collection of compression options
(RLE, dictionary, gzip, …)

Columns stored in 1MB blocks

Two sort options:
1) Compound sort key 
2) “Interleaved” sort key 

(multidimensional sorting)
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Unique Fault Tolerance Approach

LEADER
NODE

Catalogs

NODE 1SLICE 
1

SLICE 
2

NODE 2SLICE 
3

SLICE 
4

ID AmtName ID AmtName ID AmtName ID AmtNameID AmtName ID AmtNameID AmtName ID AmtName

S3 ID AmtName ID AmtNameID AmtName ID AmtName

Each 1MB block gets replicated on 
a different compute node

And also on S3

S3, in turn, triply replicates 
each block
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Handling Node Failures

LEADER
NODE

Catalogs

NODE 1SLICE 
1

SLICE 
2

NODE 2SLICE 
3

SLICE 
4

ID AmtName ID AmtName ID AmtName ID AmtNameID AmtName ID AmtNameID AmtName ID AmtName

S3 ID AmtName ID AmtNameID AmtName ID AmtName

Assume Node 1 fails

Alternative #1: Node 2 processes 
load until Node 1 is restored

Alternative #2: New node instantiated

NODE 3SLICE 
1

SLICE 
2

Node 3 processes 
workload using data in S3

Until local disks are 
restored
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Redshift Summary

• Highly successful cloud SAAS DW service

• Classic shared-nothing design 
• Leverages S3 to handle node and disk failures
• Key strength: performance through use of local storage
• Key weaknesses:  compute cannot be scaled 

independent of storage (and vice versa)
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Redshift Spectrum

• Serverless extension to Redshift

–Spectrum automagically runs on many nodes you do 
not need to start or stop. Pay per query

• Can access large datasets in S3
–Parquet, ORC, CSV, json, …

• Streams query sub-results into a Redshift cluster

–Redshift cluster handles the rest of the query
–Spectrum can filter and pre-aggregate massive data
–Spectrum-Redshift highly compatible
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Redshift Spectrum

Spectrum
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Snowflake Elastic DW
• Shared-storage design

–Compute decoupled from storage
–Highly elastic 

• Leverages AWS

–Tables stored in S3 but dynamically cached on local 
storage Clusters of EC2 instances used to execute 
queries

• Rich data model
–Schema-less ingestion of JSON documents
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Snowflake Architecture

S3 DATA 
STORAGE

COMPUTE
LAYER

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 CLUSTER OF EC2 INSTANCES

DATA CACHE

VIRTUAL
WAREHOUSE

N1 N2

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 N5 N6 N7 N8

CLOUD
SERVICES

AUTHENTICATION & ACCESS CONTROL

QUERY
OPTIMIZER

TRANSACTION
MANAGER

INFRASTRUCTURE
MANAGER

SECURITY

METADATA
STORAGE

Database tables stored here

These disks are strictly 
used as caches
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Table Storage

• Rows of each table are stored in multiple
S3 files:

• Each file is ~10MB

C
us

to
m
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_F

ile
1

C
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to
m
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_F

ile
2

…

C
us

to
m

er
_F

ile
N

§ Inside a file, rows stored 
in columnar fashion

ID
NAME

AMTDUE

FILE
HEADER

ID
VALUES

NAME
VALUES

AMT_DUE
VALUES

”Standard” compression (gzip, 
RLE, …) schemes available

Min & max value of each column of each
file of each table are kept in catalog. 

Used for pruning at run time.

Not able to support hash or RR 
partitioning as files are created 

strictly as rows are inserted into table
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Virtual Warehouses

Dynamically created cluster of EC2 instances

COMPUTE
LAYER

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 CLUSTER OF EC2 INSTANCES

DATA CACHE

Three sizing mechanisms:
1) Number of EC2 instances
2) ”Size” of each instance (# cores, I/O 

capacity) 
3) Auto-scaling of one virtual warehouseLocal disks cache file headers & 

table columns
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Separate Compute & Storage.  

• Queries against the same DB can 
be given the resources to meet 
their needs – truly unique idea

• DBA can dynamically adjust 
number & types of nodes 

• This flexibility is simply not feasible 
with a shared-nothing approach 
such as RedShift.

Sales DB

VIRTUAL
WAREHOUSE

N1 N2

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 N5 N6 N7 N8

S3

Q1 Q2
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Data sharing
• Enabled by Snowflake’s unique cloud architecture

Data
ConsumersData

Providers

Consumers
• Get access to the data without any

need to move or transform it.
• Query and combine shared data 

with existing data or join together
data from multiple publishers

Providers
• Secure and integrated Snowflake’s

access control model
• Only pay normal storage costs for 

shared data
• No limit to the number of 

consumer accounts with which a 
dataset may be shared
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Snowflake Summary

• Designed for the cloud from conception

• Can directly query unstructured data (Json) w/o loading
• Compute and storage independently scalable

– AWS S3 for table storage, uses its own closed formal (you need to load)
– Virtual warehouses composed of clusters of AWS EC2 instances
– Not ”serverless”

– Queries can be given exactly the compute resources they need

• No management knobs
– No indices, no create/update stats, no distribution keys, …
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Google BigQuery
• Separate storage and compute

• Leverages Google’s internal storage & execution 
stacks

–Collosus distributed file system  
–DremelX query executor
–Jupiter networking stack

–Borg resource allocator
• No knobs, no indices, …
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BigQuery Tables
• Stored in Collosus FS

–Partitioned by day (optionally)
• Columnar storage (Capacitor)

–RLE compression

–Sampling used to pick sort order
–Columns partitioned across multiple disks

• Also “external” tables 

–JSON, CSV & Avro formats
–Google Drive and Cloud Storage
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Query Execution
SQL queries compiled into a tree of DremelX operators

AggAgg Agg Agg

SHUFFLE

JoinJoin Join Join

SHUFFLE

FilterFilter Filter Filter

MASTER

Collosus DFS

Called “shards”

Buffers rows in 
dedicated “memory” 
nodes

Executed by a “slot”

Highly skewed joins??

All operators are 
“purely in memory”

Max of 2000 slots/query
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CPU Resource Allocation
• Serverless, which usually implies.. 

• compute resources not dedicated!
–Shared among other internal and external customers
–No apparent way to control computational resources 

used for a query
• # of shards/slots assigned to an operator function of:

–Estimated amount of data to be processed
–Cluster capacity and current load 
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BigQuery Pricing
• Storage:  $0.02/GB/month

(AWS is about $0.023/GB/month)
• Query options

1) Pay-as-you-go:  $5/TB “processed” 
- calculated after column is uncompressed

(AWS is about $1.60/TB using M4.4Xlarge EC2 
instance) 
2) Flat rate: $40,000/month for 2,000 dedicated slots
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Amazon Athena
• Similar to Google BigQuery:

– serverless analytical SQL
• Works straight on S3

–Parquet, ORC, CSV, JSON
–Pay by the data accessed (only)

• Presto in-the-cloud
–plus Hive for table creation

–plus “Glue” for bulk loading
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Databricks Spark
• Spark-as-a-service in the cloud (“the best Spark”)

–All data stored in S3
• Clusters run in the user account

–Control plane runs in Databricks account

• User can dynamically power up and down clusters
–Clusters can be grown and shrunk
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DBIO Caching Layer
• cloud instances have fast local disks

– AWS: NVMe 3TB drives, 500MB/s per core (125MB/s S3)

– Azure: even bigger difference (slower network)

• DBIO caches Parquet pages
– compressed or uncompressed

– Spark scheduler schedules jobs with affinity (node that likely caches 
data becomes executor of queries on ot)
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Databricks Big Data - AI positioning
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Databricks Big Data - AI positioning
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Databricks Delta
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Databricks Delta
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Databricks Delta under the Hood
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Databricks Delta under the Hood
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Databricks MLflow
• System to make ML experiments reproducible
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Pay For What You Use
• Amazon Redshift

– More storage requires buying more compute. Rather expensive.

• Snowflake

– Charged separately for S3 storage and EC2 usage

– Data resides in Snowflake account 

– works in AWS, Azure, and soon Google cloud

• BigQuery serverless

– Charged separately for GFS storage and TBs “processed”

– Data resides at Google.

• Amazon Athena serverless

– Presto-in-the-cloud. Pay per data accessed.

• Databricks

– Charged separately for S3 storage and EC2 usage (user account)

– plus DBUs to Databricks (~EC2 usage)

– works in AWS & Azure
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Elasticity
• Redshift

– Co-located storage and compute constrains elasticity

• Snowflake
– Query-level control through Virtual Warehouse mechanism

• BigQuery
– Google decides for you based on input table sizes

• Athena
– Amazon decides for you based on input table sizes

• Databricks Spark
– DB-level adjustment (cluster size) – dynamically changeable
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Summary
• The MapReduce vs Database debate

– Big Data technologies are adopting database ideas increasingly
• Schema, Storage Techniques, Query Execution, …

• Architecture of Analytical Database Systems
– Understand the basic design areas (storage, query processing, system)

• Column storage, compression, vectorization/JIT, MinMax pushdown, clustering, 
partitioning/distribution, update infrastructure, …

• Cloud Database Systems

– Motivation, Characteristics – differences with on-premise
• CapEx vs OpEx, time to deployment, elasticity, human factors
• Absence of data locality 

– Overview of some of the popular systems
• Redshift, Snowflake, Databricks, BigQuery & Athena
• How is it charged? How does it scale? Who holds the Data
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