

Big Data for Data Science

SQL on Big Data

THE DEBATE: DATABASE SYSTEMS VS MAPREDUCE

A major step backwards?

- MapReduce is a step backward in database access
 - Schemas are good

Centrum Wiskunde & Informatica

- Separation of the schema from the application is good
- High-level access languages are good
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
- MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
- MapReduce is incompatible with DMBS tools

Michael Stonebraker Turing Award Winner 2015

- Databases only help if you know what questions to ask
 - "Known unknowns"

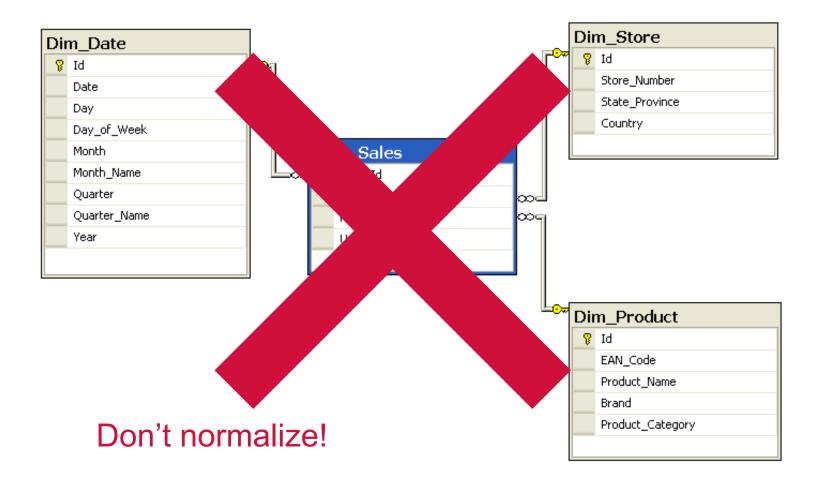
Centrum Wiskunde & Informatica

- What's if you don't know what you're looking for?
 - "Unknown unknowns"

ETL: redux

- Often, with noisy datasets, ETL is the analysis!
- Note that ETL necessarily involves brute force data scans
- E, then L and T?

Structure of Hadoop warehouses



CWI

Centrum Wiskunde & Informatica

Relational databases vs. MapReduce

Relational databases:

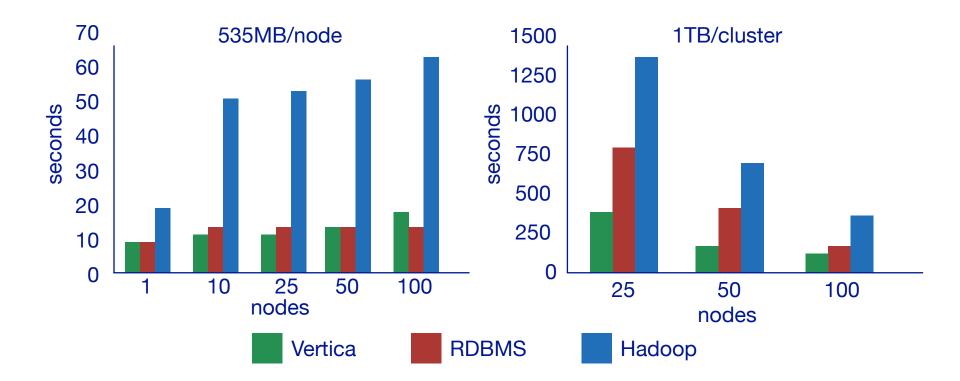
Centrum Wiskunde & Informatica

- Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
 - ACID = Atomicity, Consistency, Isolation, Durability
- Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- SQL: query language, automatic query optimization
- MapReduce (Hadoop):
 - Designed for large clusters, fault tolerant
 - Data is accessed in "native format"
 - Programmers retain control over performance
 - Open source

Philosophical differences

- Parallel relational databases
 - Schema on write
 - Failures are relatively infrequent
 - "Possessive" of data
 - Mostly proprietary
- MapReduce
 - Schema on read
 - Failures are relatively common
 - "In situ" data processing
 - Open source

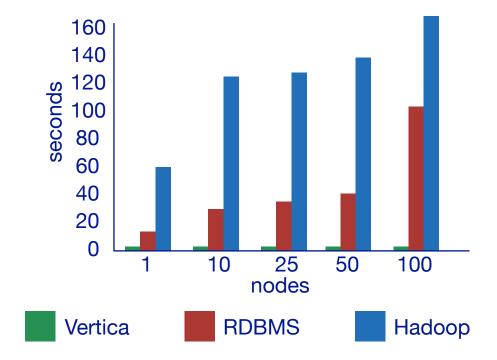
MapReduce vs. RDBMS: grep



SELECT * FROM Data WHERE field LIKE '%XYZ%';

www.cwi.nl/~boncz/bigdatacourse

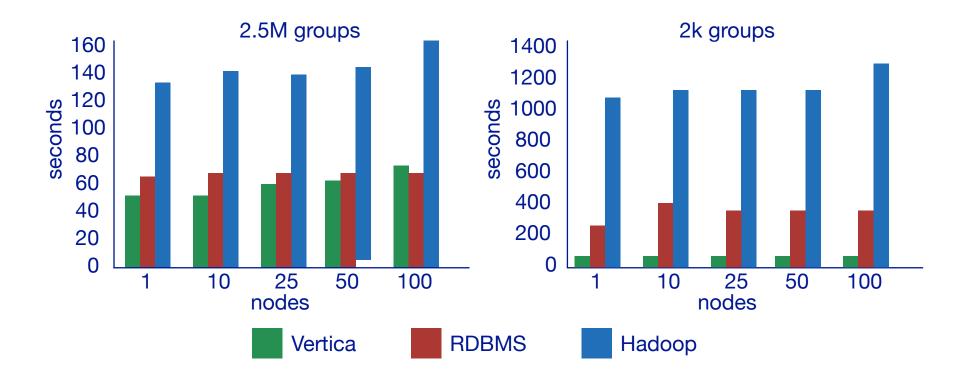
MapReduce vs. RDBMS: select



SELECT pageURL, pageRank FROM Rankings WHERE pageRank > X;

www.cwi.nl/~boncz/bigdatacourse

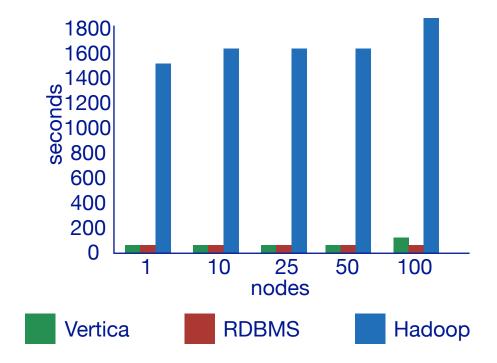
MapReduce vs. RDBMS: aggregation



SELECT sourceIP, SUM(adRevenue) FROM UserVisits GROUP BY sourceIP;

www.cwi.nl/~boncz/bigdatacourse

MapReduce vs. RDBMS: join

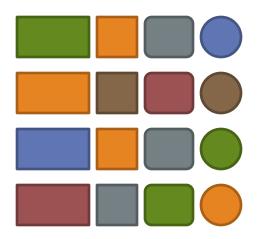


www.cwi.nl/~boncz/bigdatacourse

Why?

- Schemas are a good idea
 - Parsing fields out of flat text files is slow
 - Schemas define a contract, decoupling logical from physical
- Schemas allow for building efficient auxiliary structures
 - Value indexes, join indexes, etc.
- Relational algorithms have been optimised for the underlying system
 - The system itself has complete control of performance-critical decisions
 - Storage layout, choice of algorithm, order of execution, etc.

Storage layout: row vs. column stores



Row store

Column store

Storage layout: row vs. column stores

Row stores

Centrum Wiskunde & Informatica

- Easy to modify a record
- Might read unnecessary data when processing
- Column stores
 - Only read necessary data when processing
 - Tuple writes require multiple accesses

Advantages of column stores

Read efficiency

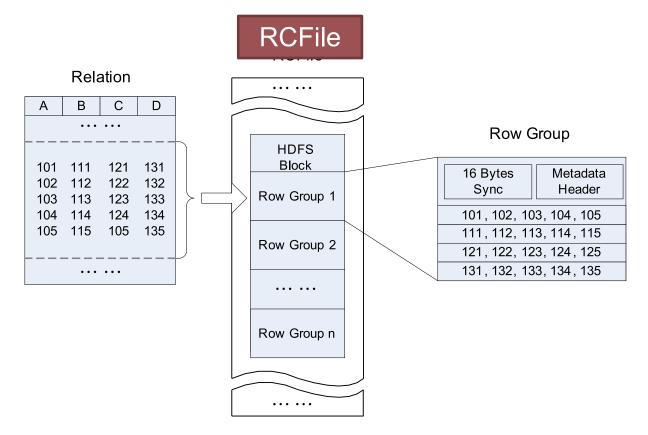
Centrum Wiskunde & Informatica

- If only need to access a few columns, no need to drag around the rest of the values
- Better compression
 - Repeated values appear more frequently in a column than repeated rows appear
- Vectorised processing
 - Leveraging CPU architecture-level support
- Opportunities to operate directly on compressed data
 - For instance, when evaluating a selection; or when projecting a column

Why not in Hadoop?

CWI

Centrum Wiskunde & Informatica



Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

RCFile \rightarrow ORC, Parquet (+compression)

BIG DATA SQL SYSTEMS

Big SQL System Architecture

storage

- -columnar storage + compression
- -table partitioning / distribution
- -clustering and indexing

cluster

- (meta-) data sharing
- elastic resource provisioning
- continous update infrastructure

query-processor

- vectorized or JIT codegen
- fine- & coarse-grained parallelism
- rich SQL (+authorization+..)

Big SQL System Architecture

storage

- -columnar storage + compression
- -table partitioning / distribution
- -clustering and indexing

cluster

- (meta-) data sharing
- elastic resource provisioning
- continous update infrastructure

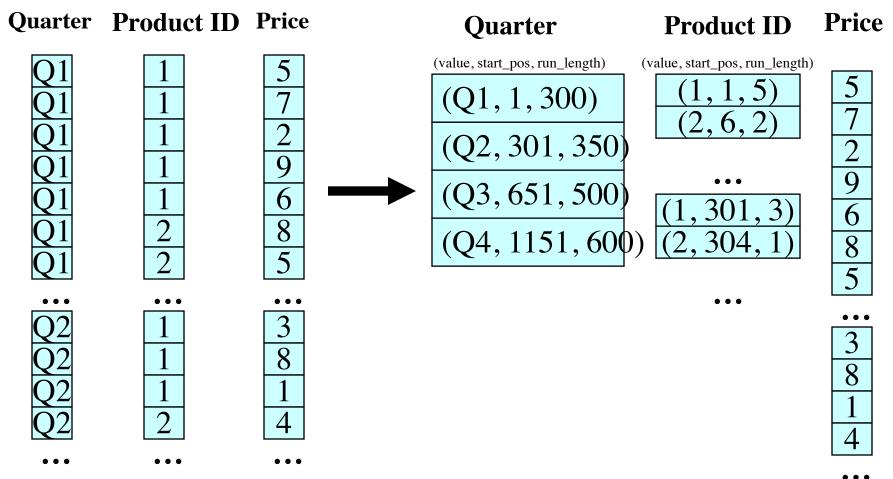
query-processor

- vectorized or JIT codegen
- fine- & coarse-grained parallelism
- rich SQL (+authorization+..)

Columnar Compression

- Trades I/O for CPU
 - A winning proposition currently
 - Even trading RAM bandwidth for CPU wins
 - 64 core machines starved for RAM bandwidth
- Additional column-store synergy:
 - Column store: data of the same distribution close together
 - Better compression rates
 - Generic compression (gzip) vs Domain-aware compression
 - Synergy with vectorized processing (see later) compress/decompress/execution, SIMD
 - Can use extra space to store multiple copies of data in different sort orders (Vertica approach)

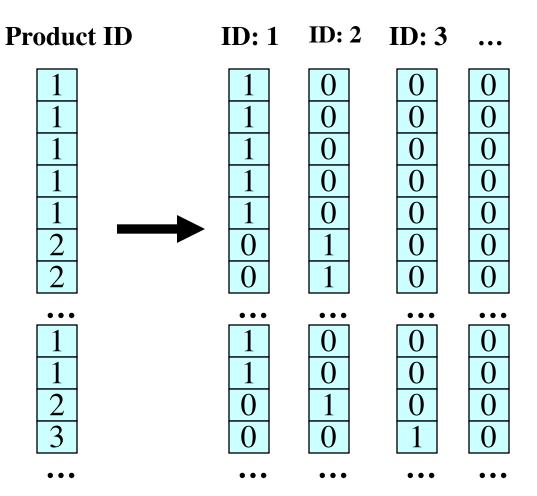
Run-length Encoding



"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Bitmap Encoding

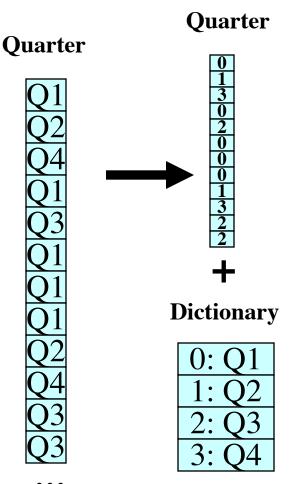
- For each unique value, v, in column c, create bit-vector b
 - b[i] = 1 if c[i] = v
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse



"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores have the advantage that dictionary entries may encode multiple values at once



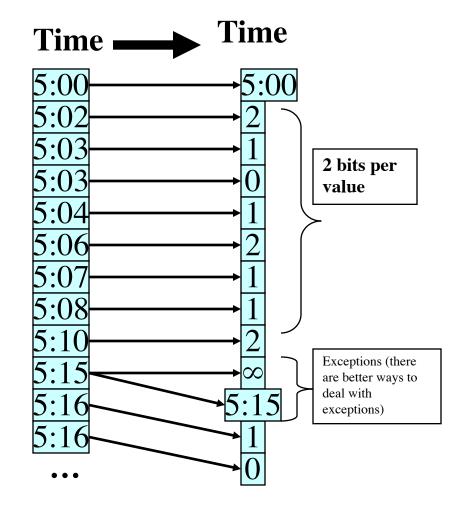
- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - timestamps
 - object IDs

CWI

Centrum Wiskunde & Informatica

sorted / clustered columns

"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE'06



Heavy-Weight Compression Schemes

Algorithm	Decompression Bandwidth
BZIP	10 MB/s
71.10	20 MD/-
ZLIB	80 MB/s
LZO	300 MB/s

- Modern disks (SSDs) can achieve > 1GB/s
- 1/3 CPU for decompression → 3GB/s needed
- → Lightweight compression schemes are better
- → Even better: operate directly on compressed data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

Examples

- SUM_i(rle-compressed column[i]) → SUM_g(count[g] * value[g])
- (country == "Asia") → countryCode == 6
 strcmp SIMD

Benefits:

- I/O CPU tradeoff is no longer a tradeoff (CPU also gets improved)
- Reduces memory–CPU bandwidth requirements
- Opens up possibility of operating on multiple records at once

Big SQL System Architecture

storage

- –columnar storage + compression
- -table partitioning / distribution
- -clustering and indexing

cluster

- (meta-) data sharing
- elastic resource provisioning
- continous update infrastructure

query-processor

- vectorized or JIT codegen
- fine- & coarse-grained parallelism
- rich SQL (+authorization+..)

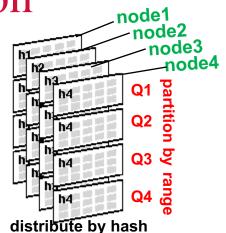
Table Partitioning and Distribution

- data is spread based on a Key
 - Functions: Hash, Range, Value
- "distribution"

Centrum Wiskunde & Informatica

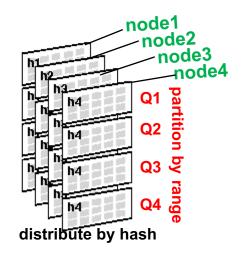
- Goal: parallelism
 - give each compute node a piece of the data
 - each query has work on every piece (keep everyone busy)
- "partitioning"
 - Goal: data lifecycle management
 - Data warehouse e.g. keeps last six months
 - Every night: load one new day, drop the oldest partition
 - Goal: improve access patterm
 - when querying for May, drop Q1,Q3,Q4 ("partition pruning")

Which kind of function would you use for which method?



Data Placement in HDFS

- Each node writes the partitions it owns
 - Where does the data end up, really?
- HDFS default block placement strategy:
 - Node that initiates writes gets first copy
 - 2nd copy on the same rack
 - 3rd copy on a different rack
- Rows from the same record should be on the same node
 - Not entirely trivial in column stores
 - Column partitions should be co-located
 - Simple solution:
 - Put all columns together in one file (RCFILE, ORCFILE, Parquet)
 - Complex solution:
 - Replace the default HDFS block placement strategy by a custom one

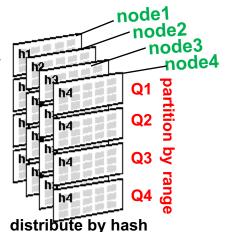


Data Placement in the Cloud?

- Cloud storage (S3, Azure Blob Storage) provides no locality
 - High latency (100-200msec)
 - Slow-medium bandwidth (20-125MB/s)
- Partitioning and Distribution still make sense
 - Distribution: allow jobs to be parallelized
 - Partitioning: partition-pruning, data lifecycle mgmt
- Data locality

Centrum Wiskunde & Informatica

- Can only be achieved by caching: fill local disk on-the-fly, reuse data from it
- Local NVMe disk (AWS i3 instance type):
 - 0.03msec latency, ~500MB/sec bandwidth, 500GB size (per core)



Natural Order Indexing

- Data is often naturally ordered
 very often, on date
- Data is often correlated
 - orderdate/paydate/shipdate
 - marketing campaigns/date
 - ..correlation is everywhere
 - ..hard to predict

Zone Maps

- Very sparse index
- Keeps MinMax for every column
- Cheap to maintain
 - Just widen bounds on

each modification

ccounts]
name	balance]
Isabella	269.38	N
Jackson	914.11	zone 0
Lucas	346.61	ő
Sophia	266.55	
Mason	850.90	8
Ethan	521.60	zone
Emily	647.38	-
Lily	119.40	
Chloe	526.08	N
Emma	497.19	zone
Aiden	22.03	N
Ava	140.67	
Mia	383.69	30
Jacob	899.41	3one 3
	Isabella Jackson Lucas Sophia Mason Ethan Emily Lily Chloe Emma Aiden Ava Mia	name balance Isabella 269.38 Jackson 914.11 Lucas 346.61 Sophia 266.55 Mason 850.90 Ethan 521.60 Emily 647.38 Lily 119.40 Chloe 526.08 Emma 497.19 Aiden 22.03 Ava 140.67 Mia 383.69

Q: acctno BETWEEN 150 AND 200?

zone	KEY		acctno		name		balance	
	\min	max	\min	max	min	max	min	max
0	00	03	019	156	Isabella	Sophia	266.55	914.11
1	04	07	153	380	Emily	Mason	119.40	850.90
2	08	11	332	592	Aiden	Emma	22.03	526.08
3	12	13	808	896	Mia	Jacob	383.69	899.41

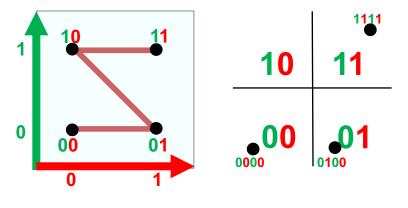
Q: key BETWEEN 13 AND 15?

Partitioning is often done on the time dimension.

• what if you want to partition on multiple dimensions?

Use an ordering function that reduces **multiple** dimensions to a **single**

For instance **Z-order** mixes the dimension bits round robin (bitwise zero=0,one=1,two=10,three=11,four=100,five=101,six=110,seven=111, etc)



CWT

Centrum Wiskunde & Informatica

Example:

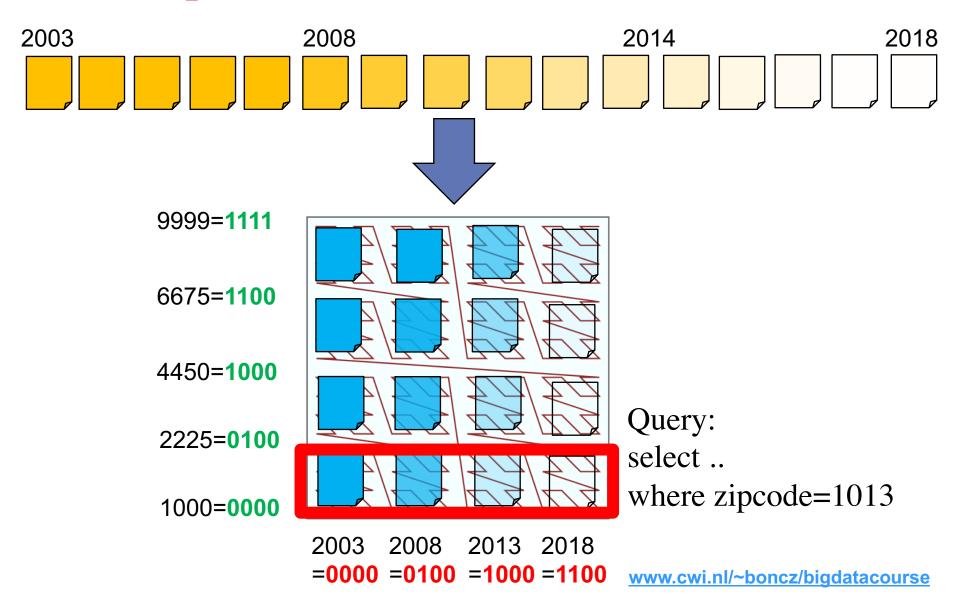
dataframe of 10.000 parquet files queries filter on zipcode or time

- create 128 time ranges (0-63 = 6bits)
- create 128 zipcode ranges (0-63 = 6bits)
- bitmix the range numbers (0-4095 = 12bits)
- re-partition the dataframe on this number Desired result: 4096 new parquet files

110000

Question: will "partition pruning" based on MinMax become more effective?

Example



Big SQL System Architecture

storage

- –columnar storage + compression
- -table partitioning / distribution
- -clustering and indexing

cluster

- (meta-) data sharing
- elastic resource provisioning
- continous update infrastructure

query-processor

- vectorized or JIT codegen
- fine- & coarse-grained parallelism
- rich SQL (+authorization+..)

DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: ?
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

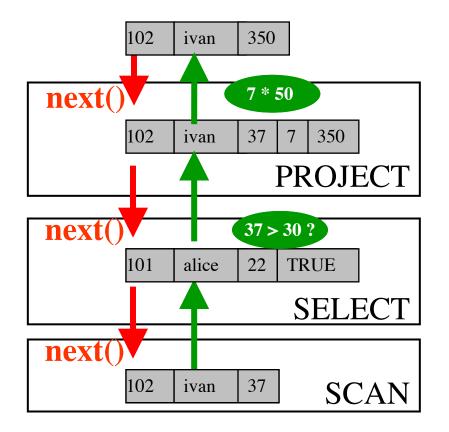
DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: 0.2s
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

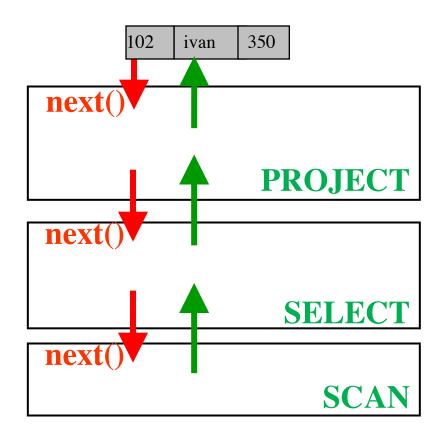
How Do Query Engines Work?



CWI

SELECT id, name (age-30)*50 AS bonus FROM employee WHERE age > 30

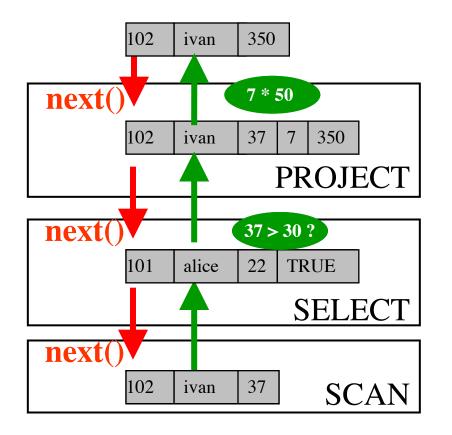
How Do Query Engines Work?



Operators

Iterator interface -open() -**next():** tuple -close()

How Do Query Engines Work?



CWI

Primitives

Provide computational functionality

All arithmetic allowed in expressions, e.g. Multiplication

mult(int,int) 🗲 int

www.cwi.nl/~boncz/bigdatacourse

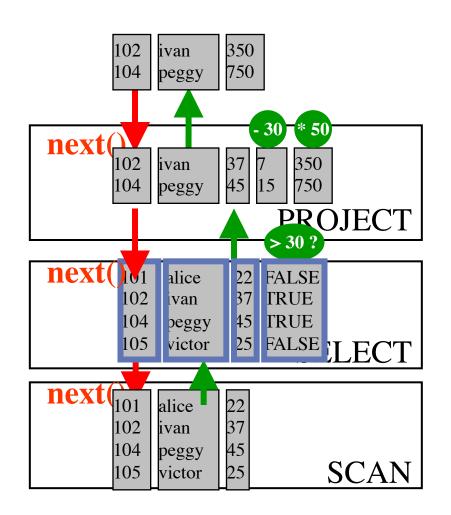
"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

"Vectorized In Cache Processing"

vector = array of ~100

processed in a tight loop

CPU cache Resident



"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Observations:

next() called much less
often → more time spent
in primitives less in
overhead

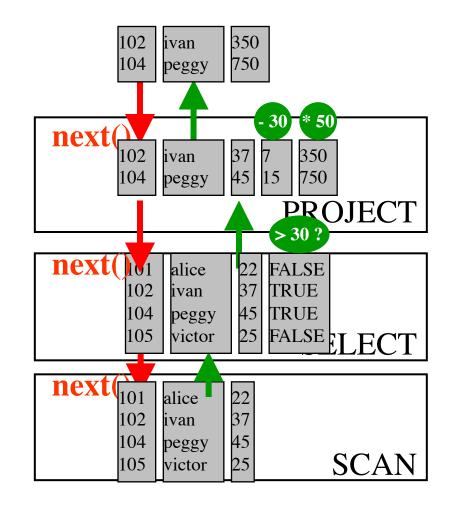
primitive calls process an

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

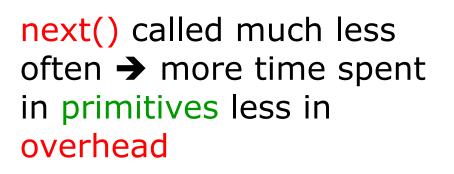
- loop-pipelining
- automatic SIMD



"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Observations:

vectorwise



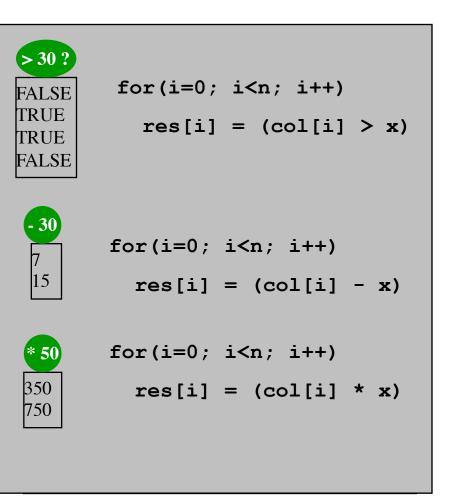
primitive calls process an

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

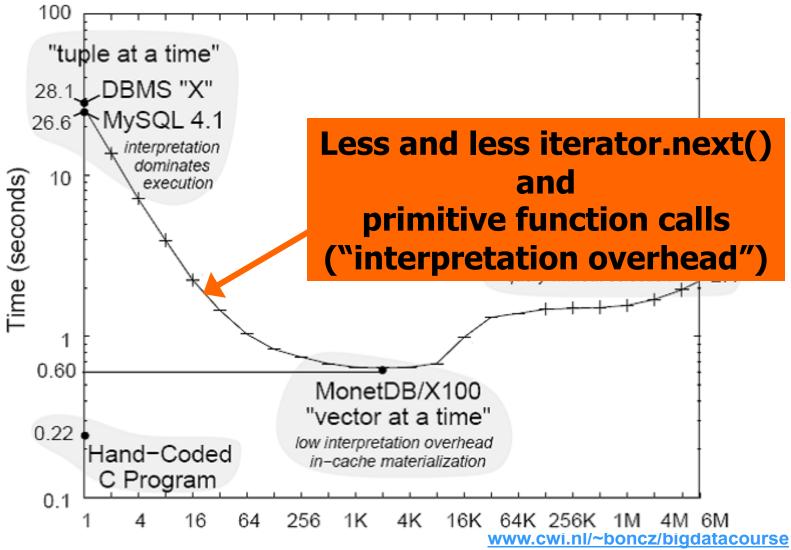
Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD



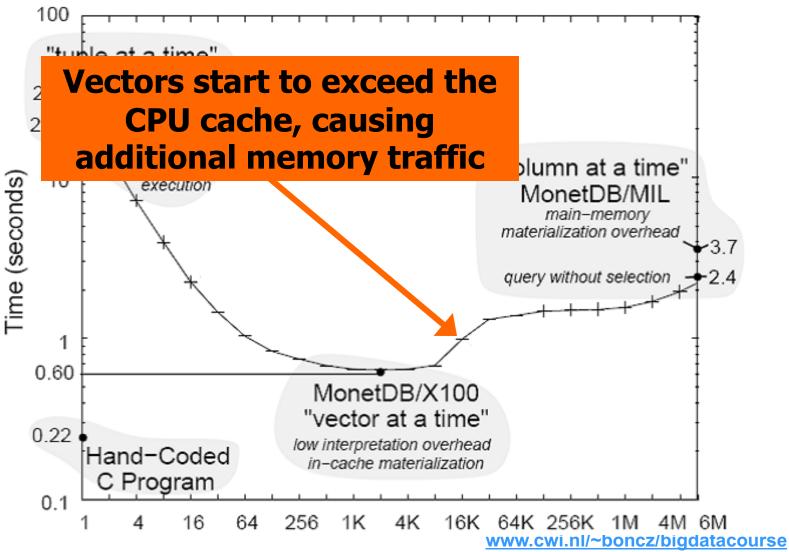
"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Varying the Vector size



"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Varying the Vector size



Systems That Use Vectorization

- Actian Vortex (Vectorwise-on-Hadoop)
- Hive, Drill

Vectorization

- · Drill operates on more than one record at a time
 - Word-sized manipulations
 - SIMD instructions
 - · GCC, LLVM and JVM all do various optimizations automatically
 - Manually code algorithms
- Logical Vectorization
 - Bitmaps allow lightning fast null-checks
 - Avoid branching to speed CPU pipeline

© MapR Technologies, confidential

www.cwi.nl/~boncz/bigdatacourse

Big SQL System Architecture

storage

- -columnar storage + compression
- -table partitioning / distribution
- -clustering and indexing

cluster

- (meta-) data sharing
- elastic resource provisioning
- continous update infrastructure

query-processor

- vectorized or **JIT codegen**
- fine- & coarse-grained parallelism
- rich SQL (+authorization+..)

Code-Generation based Query Execution

- SQL query gets parsed, normalized & optimized as in any other DB system
- Result is a physical query plan. Then:
 - Cut the plan in pipeline stages. Make a cut at each "blocking" operator
 - Blocking: op must see all data before producing output (eg SORT)
 - Translate each pipeline into a code snippet: single for-loop over the data.
 - Compile the code ("Just-In-Time compilation") and run on your data

```
SELECT count(*) FROM store_sales WHERE ss_item_sk = 1000
```

becomes in Java:

CWI

Centrum Wiskunde & Informatica

```
long count = 0;
for(ss_item_sk in store_sales) {
    if (ss_item_sk == 1000) {
        count += 1;
    }
}
```

Code-Generation based Query Execution

- Query gets parsed, normalized optimized as always
- Result is a physical query plan. Then:
 - Generate a separate program that executes (only) this exact query plan
 - Compile this program (Just-In-Time compilation) and run on your data
- The good:

Centrum Wiskunde & Informatica

CWI

- No interpretation needed. You get a program that exactly runs the query, data layouts and types known. Logic hard-coded as tight loops over the data. Very fast.
 - Spark ("tungsten whole-stage codegen"): generates java code
 - Tableau/Hyper: assembly ("LLVM IR" intermediate representation)
- The bad:
 - JIT compilation takes time (query latency). Hard to debug. Hard to get per operator performance info (only per-stage). Cannot change the queryplan at runtime.

Big SQL System Architecture

storage

- -columnar storage + compression
- -table partitioning / distribution
- -clustering and indexing

cluster

- (meta-) data sharing
- elastic resource provisioning
- continous update

infrastructure

query-processor

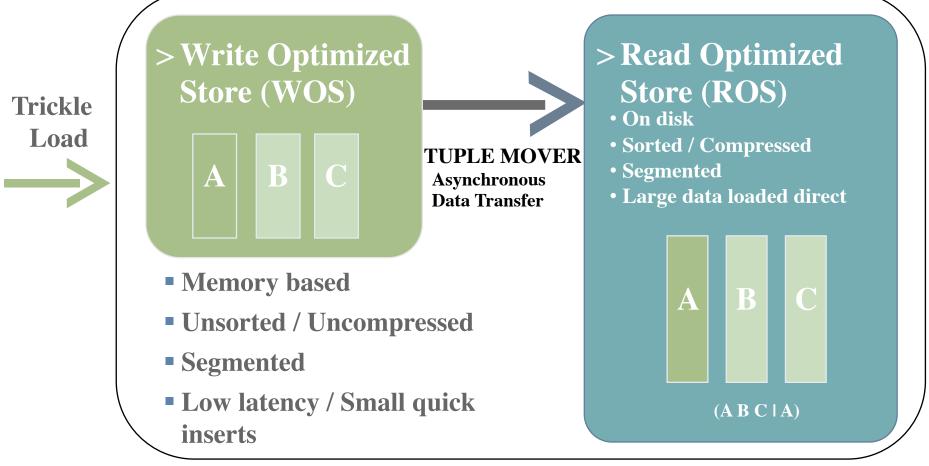
- vectorized or JIT codegen
- fine- & coarse-grained parallelism
- rich SQL (+authorization+..)

Batch Update Infrastructure (Vertica)

CWI

Centrum Wiskunde & Informatica

Challenge: hard to update columnar compressed data



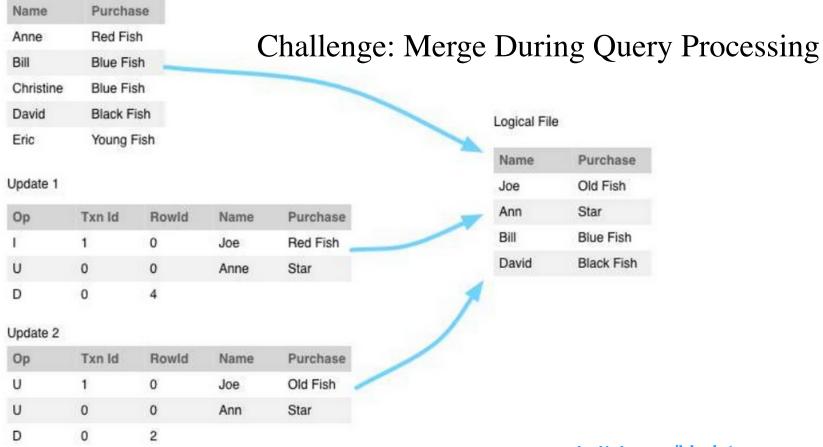
Batch Update Infrastructure (Hive)

each update writes a separate HDFS file

Base File

Centrum Wiskunde & Informatica

CWI

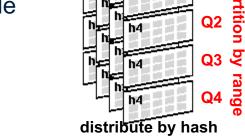


Batch Update Infrastructure in the Cloud

- Cloud storage (S3, Azure Blob Storage) is **not updatable**
 - Each persistent update must write some new S3 file
- Challenge:

Centrum Wiskunde & Informatica

- Data may arrive all the time, in small quantities
 - This leads to very many small files



Q1 🖥

- For S3+Parquet, we need 100MB of data per file to be efficient!
- Solutions:
 - 1. Batch data in the update pipeline. Only go to the cloud when you have 100MB.
 - 2. A background compaction process:
 - Once in a while collapse many small S3 files into a big one
 - Either to a minimum threshold or using exponentially bigger file targets
 - See: Log-Structured Merge-Trees (LSM trees)
 - Compaction is a good time to do partitioning/distribution

SQL ON BIG DATA - IN THE CLOUD

www.cwi.nl/~boncz/bigdatacourse

Factors driving Data Systems growth

Moore's Law

-\$100/TB storage, \$1000 servers, commodity networking

Increasing volumes of "dark" data

-Data collected but never analyzed

• Widening analysis gap of "traditional" solutions

-Due to their cost, complexity, scalability, & rigidity

Is it safe to have enterprise data in the Cloud?

2005: No way! Are you crazy?

2012: Don't think so... But wait, we store our email where?

2018: Of course!

www.cwi.nl/~boncz/bigdatacourse

Getting a database in a cloud

Hello! I am your account manager at X! Hi! I'm a Data Scientist! I'm looking for a database for Sure thing! Let's install our product, our cloud system DBMS X for you! Awesome! It seems to work! Great. Let me send you that invoice! Just a sec... How much does Hold on, let me check that the storage cost ? Wait, what? And the system is elastic, right? Mommy!!! And I only pay for what I use, right? www.cwi.nl/~boncz/bigdatacourse

Traditional DB systems and the cloud

Designed for:

- -Small, fixed, optimized clusters of machines
- -Constrained amount of data and resources
- Can be delivered via the Cloud
 - -Reduce the complexity of hardware setup, software installation
 - -No elasticity
 - -No cheap storage
 - -Not designed for cloud's poor stability
 - -Not easy to use
 - -Not "always on"

—...

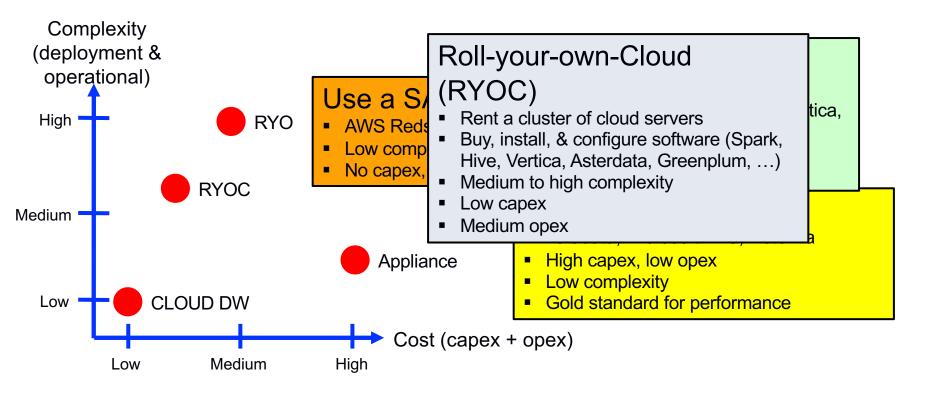
Data in the Cloud

- Data traditional DW systems are built for
 - -Assume predictable, slow-evolving internal data
 - -Complex ETL (extract-transform-load) pipelines and physical tuning
 - -Limited number of users and use-cases
 - -OK to cost \$100K per TB
- Data in the cloud
 - -Dynamic, external sources: web, logs, mobile devices, sensor data...
 - -ELT instead of ETL (data transformation inside the system)
 - -Often in semi-structured form (JSON, XML, Avro)
 - -Access required by many users, very different use cases
 - -100TBs volume common

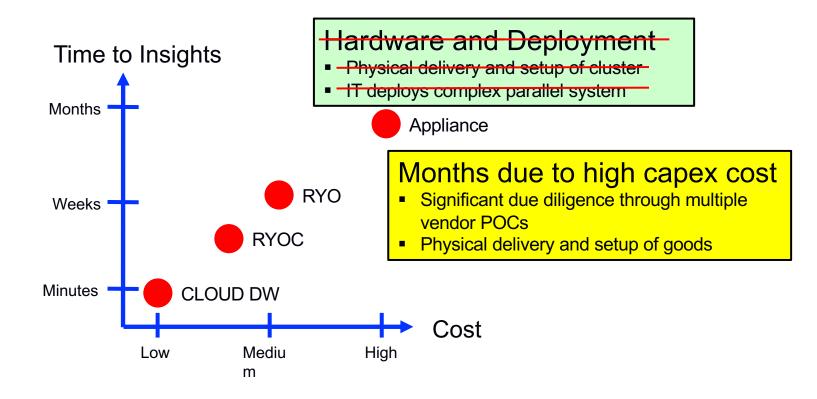
10,000 ft. view: Complexity vs Cost

CWI

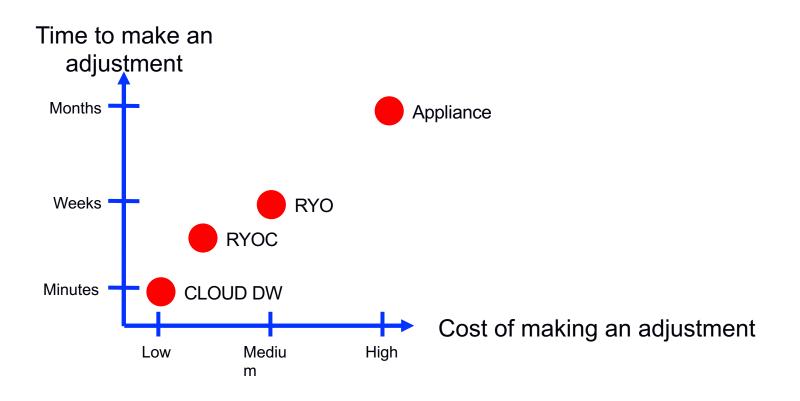
Centrum Wiskunde & Informatica



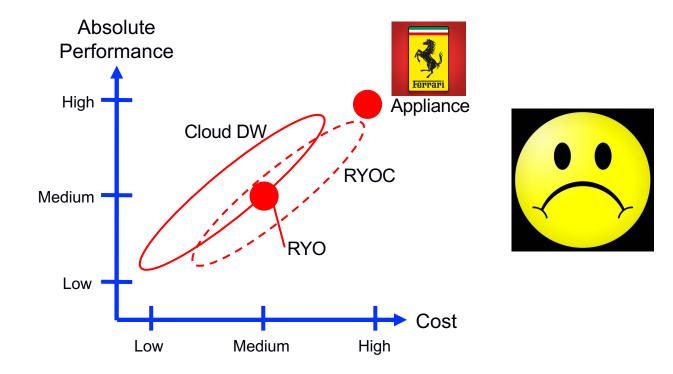
Instant gratification



Scalability and the price of agility



Unfortunately, no "free lunch"



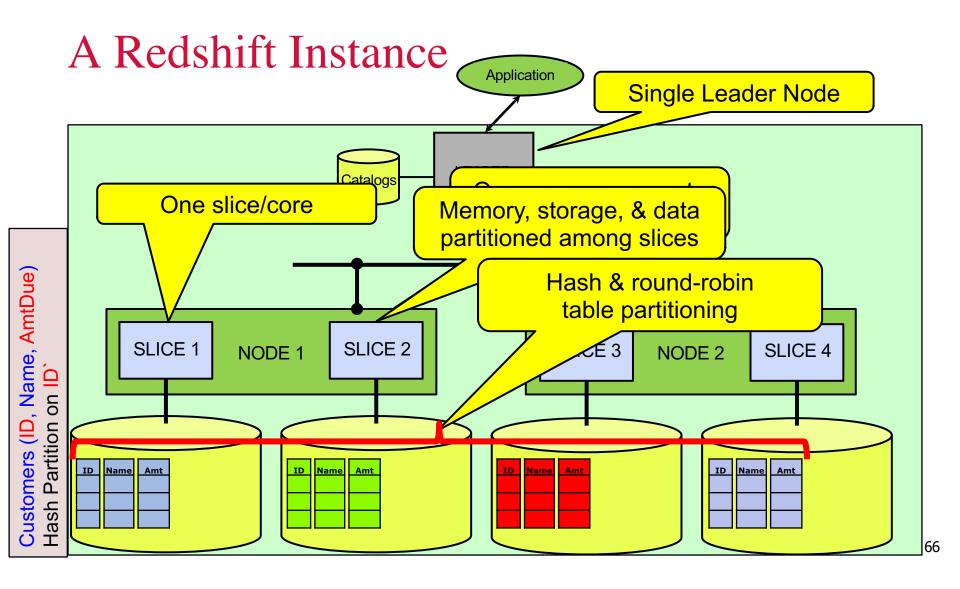
Why Cloud DW?

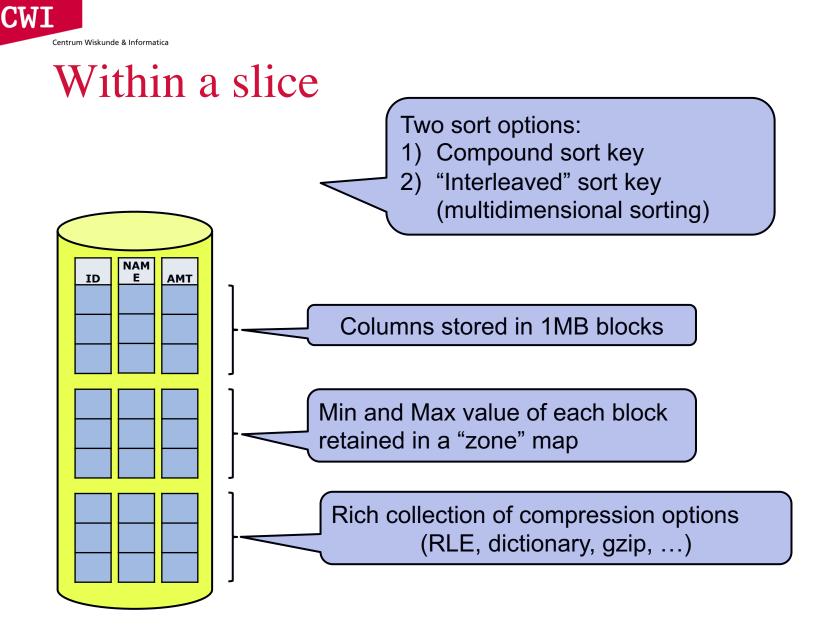
- No CapEx and low OpEx
- Go from conception to insight in hours
- Rock bottom storage prices (Azure, AWS S3, GFS)
- Flexibility to scale up/down compute capacity
- Simple upgrade process

Amazon (AWS) Redshift

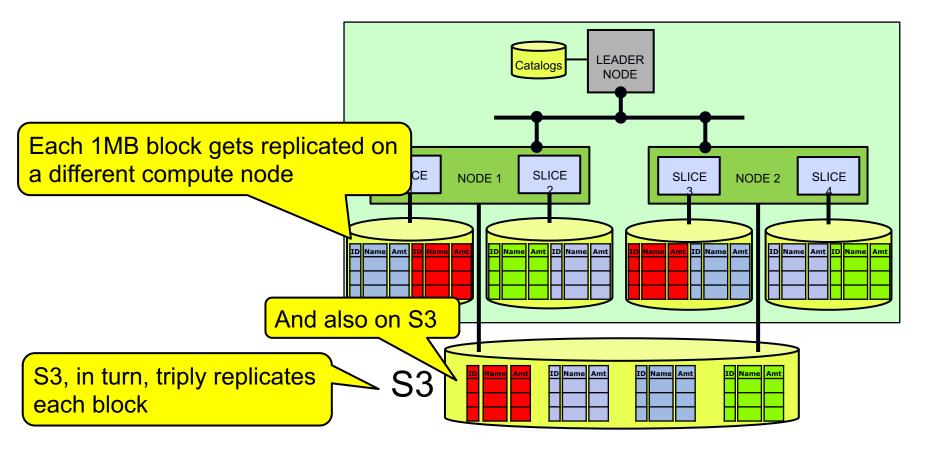
• Classic shared-nothing design w. locally attached storage

- -Engine is ParAccel database system
 - (classic MPP, JIT C++)
- Leverages AWS services
 - -EC2 compute instances
 - -S3 storage system
 - -Virtual Private Cloud (VPC)
- Leader in market adoption

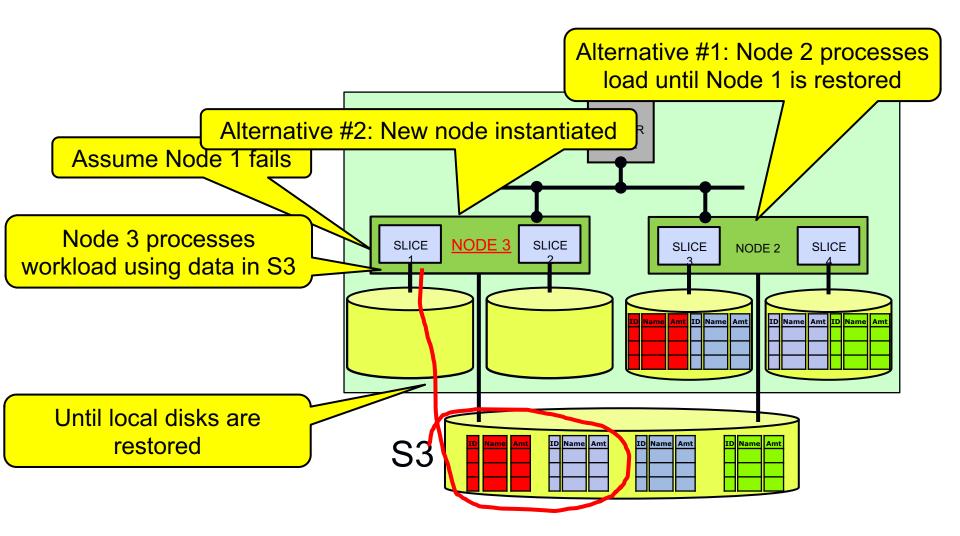




Unique Fault Tolerance Approach



Handling Node Failures



Redshift Summary

- Highly successful cloud SAAS DW service
- Classic shared-nothing design
- Leverages S3 to handle node and disk failures
- Key strength: performance through use of local storage
- Key weaknesses: compute cannot be scaled independent of storage (and vice versa)

Redshift Spectrum

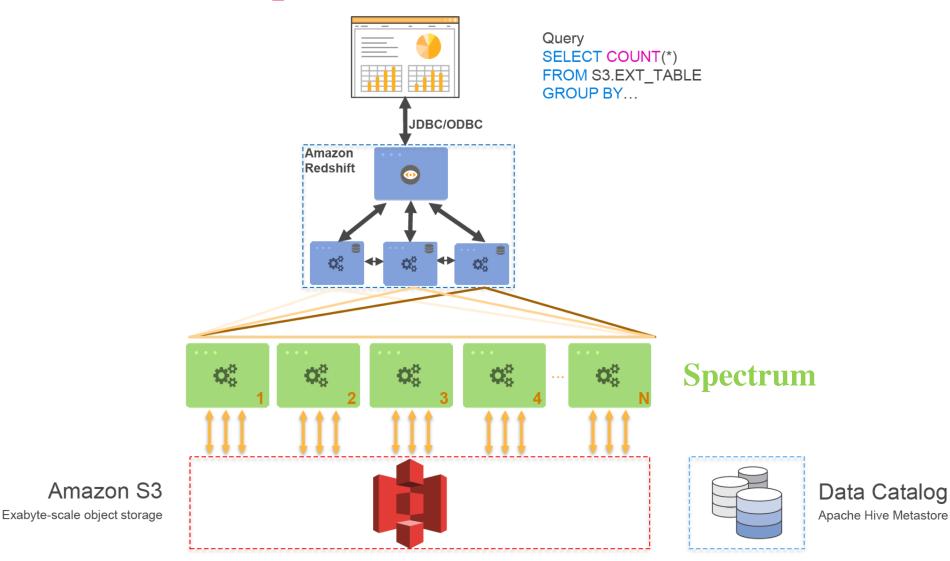
Serverless extension to Redshift

- -Spectrum automagically runs on many nodes you do not need to start or stop. Pay per query
- Can access large datasets in S3

-Parquet, ORC, CSV, json, ...

- Streams query sub-results into a Redshift cluster
 - -Redshift cluster handles the rest of the query
 - -Spectrum can filter and pre-aggregate massive data
 - -Spectrum-Redshift highly compatible

Redshift Spectrum



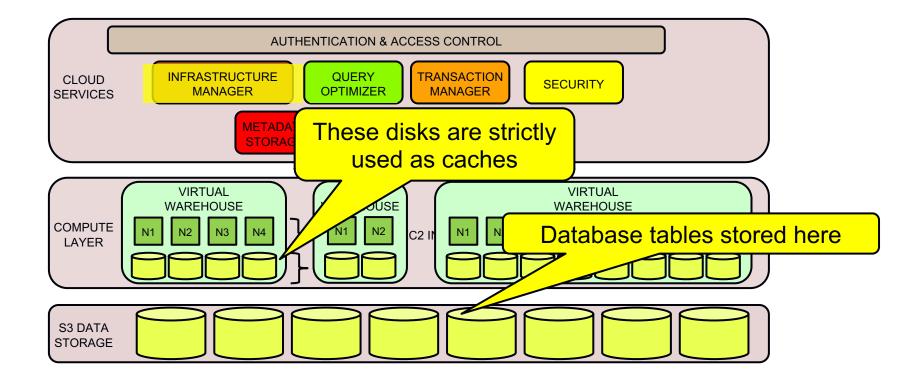
www.cwi.nl/~boncz/bigdatacourse

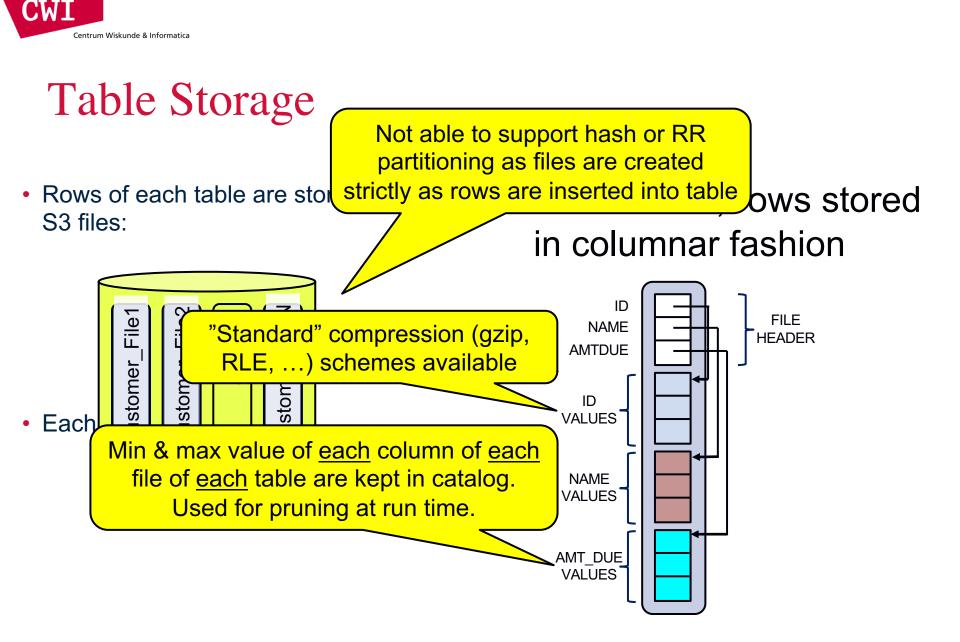
Snowflake Elastic DW

- Shared-storage design
 - -Compute decoupled from storage
 - -Highly elastic
- Leverages AWS
 - -Tables stored in S3 but dynamically cached on local storage Clusters of EC2 instances used to execute queries
- Rich data model

-Schema-less ingestion of JSON documents

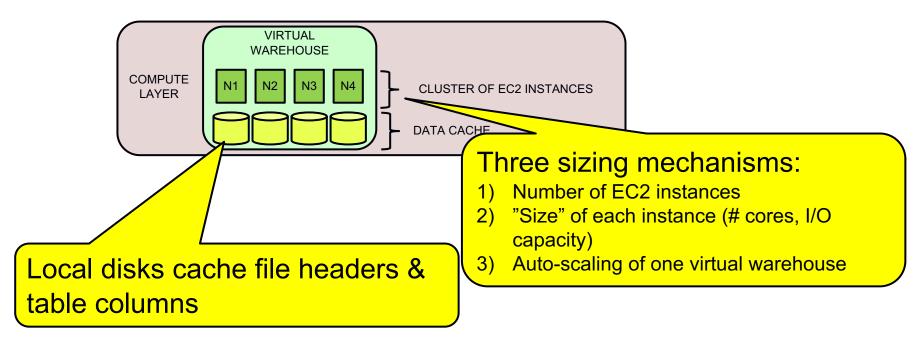
Snowflake Architecture



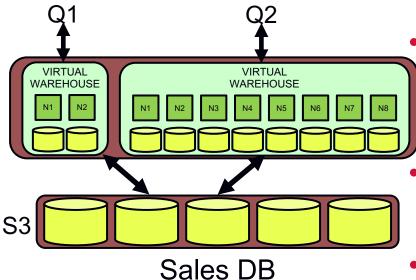


Virtual Warehouses

Dynamically created cluster of EC2 instances



Separate Compute & Storage.



- Queries against the <u>same DB</u> can be given the resources to meet their needs – <u>truly unique idea</u>
 - DBA can dynamically adjust number & types of nodes
- This flexibility is simply not feasible with a shared-nothing approach such as RedShift.

Data sharing

• Enabled by Snowflake's unique cloud architecture

Providers

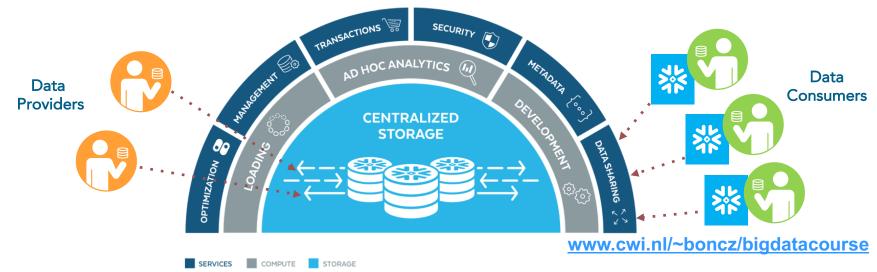
Centrum Wiskunde & Informatica

CWI

- Secure and integrated Snowflake's access control model
- Only pay normal storage costs for shared data
- No limit to the number of consumer accounts with which a dataset may be shared

Consumers

- Get access to the data without any need to move or transform it.
- Query and combine shared data with existing data or join together data from multiple publishers



Snowflake Summary

- Designed for the cloud from conception
- Can directly query unstructured data (Json) w/o loading
- Compute and storage independently scalable
 - AWS S3 for table storage, uses its own closed formal (you need to load)
 - Virtual warehouses composed of clusters of AWS EC2 instances
 - Not "serverless"

- Queries can be given exactly the compute resources they need

- No management knobs
 - No indices, no create/update stats, no distribution keys, ...

Google BigQuery

- Separate storage and compute
- Leverages Google's internal storage & execution stacks
 - -Collosus distributed file system
 - -DremelX query executor
 - -Jupiter networking stack
 - -Borg resource allocator
- No knobs, no indices, ...

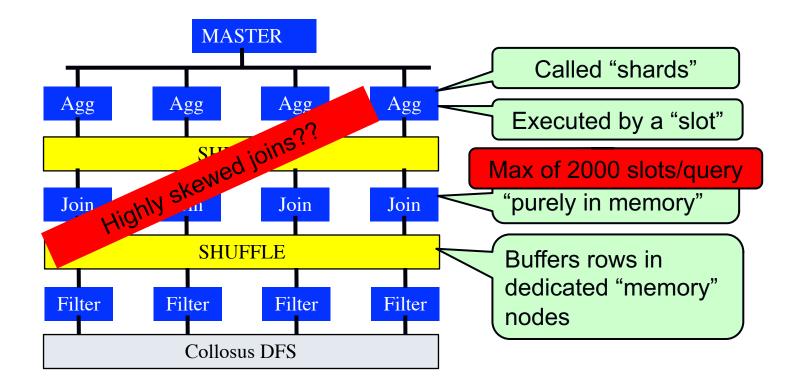
BigQuery Tables

- Stored in Collosus FS
 - -Partitioned by day (optionally)
- Columnar storage (Capacitor)
 - -RLE compression
 - -Sampling used to pick sort order
 - -Columns partitioned across multiple disks
- Also "external" tables
 - -JSON, CSV & Avro formats

-Google Drive and Cloud Storage

Query Execution

SQL queries compiled into a tree of DremelX operators



Centrum Wiskunde & Informatica

- Serverless, which usually implies..
- compute resources not dedicated!
 - -Shared among other internal and external customers
 - -No apparent way to control computational resources used for a query
- # of shards/slots assigned to an operator function of:
 - -Estimated amount of data to be processed
 - -Cluster capacity and current load

BigQuery Pricing

- Storage: \$0.02/GB/month (AWS is about \$0.023/GB/month)
- Query options
 - 1) Pay-as-you-go: \$5/TB "processed"
 - calculated after column is uncompressed
 - (AWS is about \$1.60/TB using M4.4Xlarge EC2 instance)
 - 2) Flat rate: \$40,000/month for 2,000 dedicated slots

Amazon Athena

- Similar to Google BigQuery:
 - serverless analytical SQL
- Works straight on S3
 - -Parquet, ORC, CSV, JSON
 - -Pay by the data accessed (only)
- Presto in-the-cloud
 - -plus Hive for table creation
 - -plus "Glue" for bulk loading

Databricks Spark

- Spark-as-a-service in the cloud ("the best Spark")
 - -All data stored in S3
- Clusters run in the user account
 - -Control plane runs in Databricks account
- User can dynamically power up and down clusters
 - -Clusters can be grown and shrunk

DBIO Caching Layer

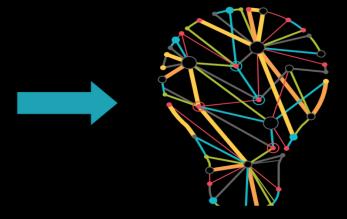
- cloud instances have fast local disks
 - -AWS: NVMe 3TB drives, 500MB/s per core (125MB/s S3)
 - -Azure: even bigger difference (slower network)
- DBIO caches Parquet pages
 - -compressed or uncompressed
 - Spark scheduler schedules jobs with affinity (node that likely caches data becomes executor of queries on ot)

Big Data was the Missing Link for Al

BIG DATA

GREAT RESULTS

Customer Data Emails/Web pages Click Streams Sensor data (IoT) Video/Speech



Big Data was the Missing Link for Al

BIG DATA

GREAT RESULTS

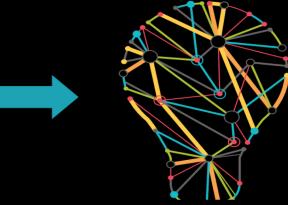
Customer Data

Emails/Web pages

Click Streams

Sensor data (IoT)

Video/Speech



Hardest part of Al isn't Al

"Hidden Technical Debt in Machine Learning Systems", Google NIPS 2015

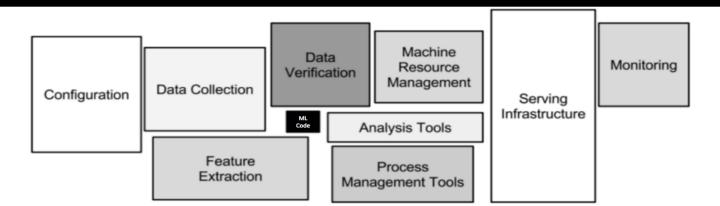


Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Databricks Delta

THE GOOD OF DATA LAKES

Centrum Wiskunde & Informatica

CWI

- Massive scale on Amazon S3
- Open Formats (Parquet, ORC)
- Predictions (ML) & Real Time Streaming

THE GOOD OF DATA WAREHOUSES

- Pristine Data
- Transactional Reliability
- Fast Queries (10-100x)

Databricks Delta

THE GOOD OF DATA LAKES

Centrum Wiskunde & Informatica

CWI

- Massive scale on Amazon S3
- Open Formats (Parquet, ORC)
- Predictions (ML) & Real Time Streaming

THE GOOD OF DATA WAREHOUSES

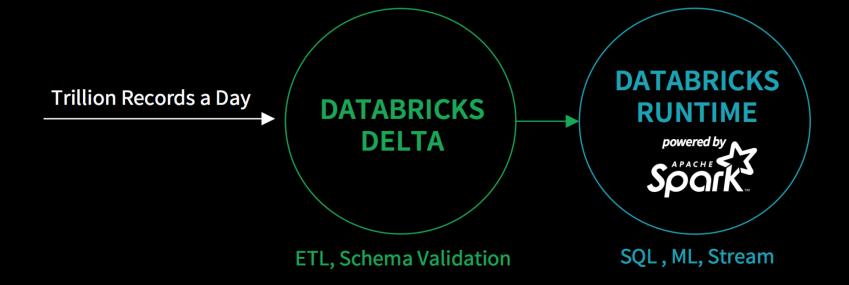
- Pristine Data
- Transactional Reliability
- Fast Queries (10-100x)

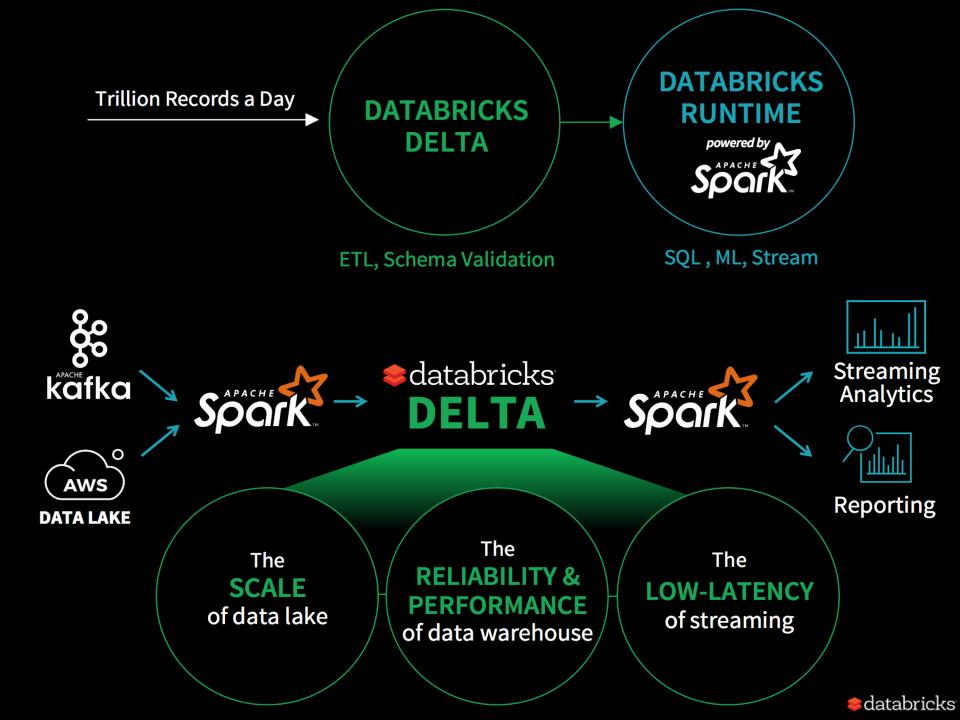
MASSIVE SCALE

• Decouple Compute & Storage

- RELIABILITY
- PERFORMANCE
- LOW-LATENCY

- ACID Transactions & Data Validation
- Data Indexing & Caching (10-100x)
- Real-Time Streaming Ingest





Databricks MLflow

System to make ML experiments reproducible

Record and query experiments: code, data, config, results ml**flow** Projects

Packaging format for reproducible runs on any platform ml**flow** Models

General model format that supports diverse deployment tools

Pay For What You Use

- Amazon Redshift
 - More storage requires buying more compute. Rather expensive.
- Snowflake

Centrum Wiskunde & Informatica

CWI

- Charged separately for S3 storage and EC2 usage
- Data resides in Snowflake account
- works in AWS, Azure, and soon Google cloud
- BigQuery
 - Charged separately for GFS storage and TBs "processed"
 - Data resides at Google.
- Amazon Athena
 - Presto-in-the-cloud. Pay per data accessed.
- Databricks
 - Charged separately for S3 storage and EC2 usage (user account)
 - plus DBUs to Databricks (~EC2 usage)
 - works in AWS & Azure

www.cwi.nl/~boncz/bigdatacourse

serverless

serverless

Elasticity

- Redshift
 - Co-located storage and compute constrains elasticity
- Snowflake
 - -Query-level control through Virtual Warehouse mechanism
- BigQuery
 - Google decides for you based on input table sizes
- Athena
 - Amazon decides for you based on input table sizes
- Databricks Spark
 - DB-level adjustment (cluster size) dynamically changeable

Summary

- The MapReduce vs Database debate
 - Big Data technologies are adopting database ideas increasingly
 - Schema, Storage Techniques, Query Execution, ...
- Architecture of Analytical Database Systems
 - Understand the basic design areas (storage, query processing, system)
 - Column storage, compression, vectorization/JIT, MinMax pushdown, clustering, partitioning/distribution, update infrastructure, ...
- Cloud Database Systems
 - Motivation, Characteristics differences with on-premise
 - CapEx vs OpEx, time to deployment, elasticity, human factors
 - Absence of data locality
 - Overview of some of the popular systems
 - Redshift, Snowflake, Databricks, BigQuery & Athena
 - How is it charged? How does it scale? Who holds the Data